A Review of Deep Learning‑Based Approaches for Detection and Diagnosis of Diverse Classes of Drugs

Artificial intelligence-based drug discovery has gained attention lately since it drastically cuts the time and money needed to produce new treatments. In recent years, a vast quantity of data in various formats has been made accessible in the medical field to analyse different health complications. Drug discovery aims to uncover possible novel medications using a multidisciplinary approach that includes biology, chemistry, and pharmacology. Traditional sentiment analysis methods count or repeat words in a text assigned sentiment ratings by an expert. Several outdated, ineffective old methodologies are utilized to forecast drug design and discovery. However, with the development of DL (deep learning), the traditional drug discovery method has been further simplified. In this work, we applied deep learning models, such as LSTM (Long short-term memory), GRU (Gated recurrent units), Bidirectional LSTM (BiLSTM), Bidirectional GRU(BiGRU), SimpleRNN, embedding+LSTM, embedding+GRU, embedding+GRU+dropout, embedding+conv1d+LSTM, and Embedding+Conv1d+GRU on a dataset of drug reviews. Furthermore, we used Adam and RMSprop, two optimizers, for each model, for increased optimization. This research focuses on categorizing medication reviews into positive and negative categories. The effectiveness of the different deep learning models was assessed using a wide range of performance measures. Experiments demonstrated that the GRU (Gated Recurrent Unit) generated exceptional validation dataset results. In addition, this study emphasizes the relevance of deep learning methods over traditional learning approaches in categorization.

Optimization and Prediction of Karanja oil transesterification with domestic microwave by RSM and ANN

The optimization and transesterification of soybean oil with methanol in the presence of sodium hydroxide as a catalyst was investigated. A low-temperature transesterification process was selected to make the transesterification process more energy efficient. To further improve the production of biodiesel, the experimental design was carried out with the Box-Behnken method. The results were analysed using the response surface methodology. A model was developed to correlate the performance of biodiesel with the parameters of the process, such as the molar ratio, the concentration of the catalyst and the reaction time. The influence of the reaction variables, including; The molar ratio of oil (6: 1–12: 1), temperature (50° C) and catalyst concentration (1–2% by weight) and residence time (30–60 minutes) on the transesterification reaction of the methyl ester of Fatty acid (FAME) were studied. A biodiesel yield of 80.86% with the molar ratio (8:1) was reached using NaOH as catalyst (1.8) in 34 minutes at a temperature of 50° C. It was observed that the catalyst concentration, the reaction time and the molar ratio had a significant effect on the yield of soybean biodiesel.

Energy Efficient Host Overloading Detection Algorithm in Cloud Computing

Cloud computing is now a most popular technology of the present generation. Energy efficiency is big aspect to think as the big data center is consuming a lot of energy to run and to serve their customers. Energy efficient algorithm and techniques are required to reduce the carbon emissions. In this paper we have worked for consolidation of Virtual Machine(VM) by detecting over-utilized hosts by using Pattern matching and reduced number of migrations by taking a new approach of Mode Absolute Deviation. It analyzes the historical data of CPU usages to search the usage pattern of CPU and finds the dynamic thresholds values for migration of virtual machine. The work has been carried out in CloudSim and the results in our work has been better than previous work[1] and we are able to save energy and reduce the number of migrations by using our proposed method.

Energy Efficient DVFS with VM Migration

Cloud Computing offers efficient computing with Pay-as-you-go models. It is now easy for consumer to start with- out need of initial setup, which saves a lot of infrastructure cost. As consumers are subscribing to the cloud, the load is increasing on the data centers, thus data centers are in need for more resources and more power. And all this process is increasing the carbon footprint and polluting environment. Now the time has come when we require efficiency in term of power. We really need to look for mechanism how the power can me be managed to be more efficient. This paper suggests the Green Architecture Framework and also suggests to use of Dynamic Voltage Frequency Scaling (DVFS) as per the load requirement which results in better energy efficiency